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EFFECTS OF CONCENTRATION AND VIBRATIONAL REWCATION 

ON INDUCTION PERIOD OF HYDROGEN-OXYGEN REACTIOJS 

by Frank E. Belles and Milton R. Lauver 

Lewis Research Center 

SUMMARY 

The p o s s i b i l i t y  t h a t  slow v ib ra t iona l  re laxat ion of oxygen (02) or hydro- 
gen (H2) m i g h t  a f f e c t  the  induction period of the high-temperature HZ - 02 r e -  
ac t ion  is  considered i n  terms of t he  data  from three  d i f f e ren t  kinds of shock- 
tube experiments. The data  cover a wide range of i n i t i a l  composition and t e m -  
perature  and include observations i n  H2 - air ,  H2 - 02 - argon ( A r ) ,  and H2 - 02 
mixtures. 
mental da ta  can be calculated by solving t h e  d i f f e r e n t i a l  r a t e  equations based 
on t h e  following simple k ine t i c  scheme: an i n i t i a t i o n  react  ion between molec- 
u l a r  species, plus t h e  th ree  usual  chain-branching react iorp.  It i s  not neces- 
sa ry  t o  invoke v ib ra t iona l  e f f ec t s  t o  obtain t h i s  agreement, but it i s  neces- 
sa ry  t o  solve t h e  problem without incorporating s teady-state  assumptions or 
l imi t a t ion  on r e l a t i v e  concentrations of H2 and 02. Thus, it is  concluded t h a t  
ex is t ing  data  exhib i t  l i t t l e  or no e f f e c t  of slow vibra t iona l  re laxat ion.  I n  
support of t h i s  conclusion, calculat ions a re  presented t o  show t h a t  t he  g rea t e s t  
possible  e f f e c t  of slow 02 re laxa t ion  would, i n  f a c t ,  be a small one. The ca l -  
culat ions were ca r r i ed  out by making the extreme assumption t h a t  a l l  the  ac t iva-  
t i o n  energy of t he  slow chain-branching s t e p  m u s t  be supplied by v ib ra t iona l  
energy of 02. Since the  l e v e l  of t h i s  energy var ies  during the  induction period 
i n  a manner governed by the  v ib ra t iona l  re laxa t ion  time, the  reac t ion  rate con- 
s t a n t  becomes t i m e  dependent. Unfortunately, the  equivalent calculat ions f o r  HZ 
cannot be made because the  re laxa t ion  t i m e  of Hz i n  the  presence of 02 is  not  
known. 

It is found that induction times i n  exce l len t  agreement with experi- 

ITITRODUCTION 

If a gaseous mixture containing hydrogen and oxygen i s  suddenly heated t o  
a temperature g rea t e r  than about iOOOo K at moderate pressure, f o r  example, by 
means of a shock wave, i t s  ign i t ion  i s  preceded by a short  induction period. 
During t h i s  i n t e r v a l  chain branching occurs, and s ince t h e  induction period 
comes before t h e  heat-releasing par t  of t he  reaction, t h e  chain-branching pro- 
cess takes  place under conditions of e s s e n t i a l l y  constant temperature and pres- 
sure. Moreover, the  time i s  so short ,  a few t o  a few hundred microseconds, 
that w a l l  e f f ec t s  cannot make themselves f e l t .  



Thus, measurements of t h e  induction period permit t h e  chain-branching pro- 
cess t o  be studied i n  a r e l a t i v e l y  uncomplicated environment. This f a c t  w a s  
perhaps f i rs t  recognized by Schott and Kinsey (ref. l), who made an  extensive 
s e t  of measurements over a wide range of temperatures and values of the hydro- 
gen t o  oxygen concentration r a t i o  [H2]/[02] from 0.25 t o  5. 

Only four reactions a r e  needed t o  describe t h e  buildup of f r e e  rad ica ls  
during t h e  induction period. F i r s t ,  t h e r e  must be an i n i t i a t i o n  react ion in-  
volving molecular species.  
t h i s  react ion may be t h e  following ( r e f .  2 ) :  

In  t h e  lower range of temperatures (lOOOo - 2000'K) 

H2 + O2 + 20H (i> 

A f t e r  a short  i n i t i a t i o n  period, which calculat ions show w i l l  occupy only a 
s m a l l  par t  of t h e  t o t a l  induction period (ref .  2 ) ,  t h e  following react ions 
branch t h e  chain: 

Rate constants ki ,  k l ,  k2, and kg a r e  avai lable  f o r  a l l  of these react ions 
( r e f s .  2 and 3) 

Schott and Kinsey correlated t h e i r  data  by p lo t t ing  t h e  parameter t i[OZ] 
against  reciprocal  temperature. They took t h e  induction period ti,. which of 
course must always be defined somewhat a r b i t r a r i l y ,  as t h e  time a t  which t h e  
hydroxyl concentration [OH] reached t h e  l i m i t  of d e t e c t a b i l i t y  i n  t h e i r  experi- 
ments, about mole per l i t e r .  They noted t h a t  t h i s  cor re la t ion  i s  t h e  one 
t o  be expected if  chain branching i s  controlled by t h e  r a t e  of t h e  slow s t e p  
(react ion (11)). 

However, they  observed a t rend  i n  t h e i r  data  such t h a t  t i [ 0 2 ]  increased 
with increasing mole f r a c t i o n  of oxygen a t  constant temperature. This i s  not 
ant ic ipated on t h e  bas i s  of t h e  s implif ied k ine t ic  model i n  which t h e  control-  
l i n g  r a t e  i s  t h a t  of react ion (11). Schott and Kinsey t e n t a t i v e l y  ascribed 
t h i s  t rend  t o  slow v ibra t iona l  re laxat ion of oxygen, which might tend t o  reduce 
t h e  r a t e  of react ion (11) below t h e  value it would have under conditions of 
f u l l  thermal equilibrium. This amounts t o  t h e  suggestion t h a t  at l e a s t  par t  of 
t h e  ac t iva t ion  energy normally resides  i n  vibrat ions of t h e  oxygen molecule. 

In order t o  invest igate  t h i s  important p o s s i b i l i t y  more fu l ly ,  it i s  nec- 
essary t o  consider data  f o r  the  widest possible range of [H2]/[02] values and, 
hence, of re laxat ion times; the  data  of White and Moore ( r e f .  4 )  a r e  extremely 
valuable on t h i s  account. I f  the data  a re  t o  be interpreted i n  the l i g h t  of 
react ions (i) t o  (111), then it i s  a l s o  important not t o  suppress any implica- 
t i o n s  of t h i s  k ine t ic  scheme; t h a t  is, the d i f f e r e n t i a l  r a t e  equa&ions must be 
solved without incorporating any assumptions about steady s t a t e s  or l ini i ta t ions 
on [Hz]/[O2] r a t i o s .  If, after t h i s ,  any discrepancies remain, they can be 
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terms of slow v ibra t iona l  relaxation. 

EFFECTS OF C O N C m R L I T I O N  ON INDUCTION PERIOD 

Calculat ions 

In  order t o  ca lcu la te  t h e  concentration of H, 0, or OH as a function of 
time during t h e  induction period, it i s  necessary t o  in t eg ra t e  t h e  s e t  of d i f -  
f e r e n t i a l  equations based on react ions (i) t o  (111). A n  obvious way t o  solve 
t h e  problem without making any simplifying assumptions is  by numerical in te -  
gra t ion  car r ied  out with t h e  a i d  of a high-speed computing machine. Such nu- 
merical  integrat ions have been reported (ref. 5 )  f o r  5-percent-H2 - 95-percent- 
a i r  mixture, and they  were used t o  explain t h e  chemiluminescence of hydroxyl 
r ad ica l  during t h e  induction period. These ca lcu la t ions  showed t h a t  a f t e r  a 
b r i e f  i n i t i a t i o n  period t h e  f ree- rad ica l  concentrations adopt t h e  following 
simple time dependence: 

where t i s  t h e  time and T i s  t h e  exponential time constant. The quan t i t i e s  
with subscript  0 a r e  pseudoin i t ia l  concentrations obtained by extrapolating 
t h e  l i n e a r  par t  of a semilogarithmic p lo t  t o  time zero. 

The simple form of equation (1) strongly suggests that  the re  i s  a general  
ana ly t ic  so lu t ion  f o r  t h e  induction-period k ine t ics .  Actually t h e r e  i s  a 
general  so lu t ion  due t o  t h e  f a c t  t ha t  react ions (I)  t o  (111) are i n  e f fec t  
f i r s t  -order react ions because [02 1 and [H2 ] remain constant during t h e  induc- 
t i o n  period. The method of solut ion f o r  such s i tua t ions  i s  outlined i n  stan- 
dard t e x t  books (ref. 6) ,  and, t h e  solut ion was car r ied  out by Kondratiev 
( r e f .  7 )  f o r  t h e  k ine t i c  scheme used i n  t h e  present paper. Nicholls, Adamson, 
and Morrison ( r e f .  8 )  a l s o  sppreciated t h e  inherent s implici ty  of the 
induction-zone kinet ics ,  but they  dea l t  w i t h  a more extensive s e t  of react ions 
and introduced approximations tha t  lead t o  a so lu t ion  good only if [Hz] and 
LO21 a r e  of order unity.  Their solution, therefore ,  i s  not adequate t o  dea l  
with a very la rge  range of [H2]/[02]. 

Brokaw ( r e f .  9 )  has recent ly  presented an approximate technique by which 
an ana ly t ic  so lu t ion  can be  obtained t h a t  gives excel lent  agreement with t h e  
r e s u l t s  of numerical integrat ion of t h e  induction-zone k ine t ics .  H& obtains 
t h e  following expressions, which a r e  appl icable  t o  t h e  high-temperature regime 
of short  induction times: 

- / ' 2  
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and 

2ki EO2 1 
[OH] = 

0 (3)  

Equation (3) expresses t h e  reasonable notion t h a t  t h e  i n i t i a t i o n  reac t ion  w i l l  
cease t o  be important when t h e  f a s t e s t  chain-branching react ion (I) uses up 
OH as rap id ly  as it i s  produced by t h e  i n i t i a t i o n  react ion.  

From t h e  previous r e s u l t s  t h e  induction time of reference 1 ([OH] = 
mole / l i t e r )  mult ipl ied by t h e  oxygen concentrat ion can immediately be wr i t ten  
as 

ti[O21 = 
Lo2 1 - 
[H2 1 1- 

c 

L ‘  4 

r 

There a r e  two main points  t o  be made about equation (4). The first i s  
that t h e  parameter 
obtained over a wide range of [H21/[021 values.  
of t h e  i n i t i a t i o n  react ion i s  s m a l l ,  s ince  it i s  i n  t h e  logarithmic term; thus, 
a la rge  e r ro r  could be made i n  [OHIO without mater ia l ly  a f fec t ing  t h e  r e s u l t  
calculated from equation (4) .  
dent evidence as t o  t h e  r a t e  constant or even t h e  occurrence of react ion (i). 

t i [ 0 2 1  should not succeed i n  cor re la t ing  induction times 
The second i s  t h a t  t h e  e f f ec t  

This is  fortunate,  because the re  is  no indepen- 

We a l s o  want t o  compare calculated induct ion times with experimental 
values obtained by two other  techniques. The most important s e t  of da ta  i s  
due t o  White and Moore (ref. 4),  who measured t h e  period of constant dens i ty  
behind shock waves by interferometry. In  a preliminary report  (ref. lo), White 
noted t h a t  t h e  times obtained i n  t h i s  way a r e  s i m i l a r  t o  those reported i n  
reference 1. It is assumed, therefore ,  t h a t  t h e  two kinds of measurements a r e  
e s s e n t i a l l y  equivalent; equation (4)  i s  a l s o  used f o r  conparisons with White 
and Moore’ s r e s u l t s .  

Final ly ,  a l imi ted  amount of new da ta  w i l l  be presented, obtained from 
observations of l i g h t  emitted at 3080 Angstroms by e l ec t ron ica l ly  excited 
hydroxyl r a d i c a l  O@. 
i n f l ec t ion  point i n  t h e  curve of l i g h t  i n t e n s i t y  against  time behind t h e  shock 
f ron t  because of t h e  competition between t h e  react ion producing t h e  excited 
molecule 

The in t e rp re t a t ion  (ref. 5)  of t h i s  l i g h t  pred ic t s  an 

* H + O2 + H2 --+ H20 + OH 
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and c o l l i s i o n a l  quenching by water produced i n  react ion (I), 

OH* + HzO --f OH + H20 (v 1 

The i n f l e c t i o n  time i s  given by t h e  following expression ( re f .  5 ) :  

i n f l e c t  ion = ' In [k lk5 ' [H 2 ] [ O H ] d ]  

The quant i t ies  (1/~) and [OHIO may be obtained by means of equations ( 2 )  and 
(3).  The rate constant k5 i s  taken as t h e  binary c o l l i s i o n  number. 

The other r a t e  constants used f o r  calculat ions are  l i s t e d  i n  the following 
t a b l e  where k = A exp( -E/RT). 

Reaction 

i 

I 

I1 

I11 

Preexponent ia l  f a c t o r ,  
A ,  

l i t e r / m o l e  -see 

1. oxloll 

6.  3X1010 

4. oXIO' 

1.2x1010 

Act iva t ion  energy, 
E, 

c al lmole 

70,000 

5,900 

17,000 

8,950 

Ref. 2 

Ref. 3 

Ad jus teda  

Adjusted" 

aAdjusted t o  give good f i t  t o  l igh t -emiss ion  d a t a  obtained f o r  
5-percent-H2 - 95-percent-air  mixture over t h e  temperature 
range from about 1200° t o  1600' K .  These k ' s  represent  
increases  i n  t h e  values  given by Baldwin ( r e f .  3 )  f o r  k2 
and by Kaufman and Del Greco ( r e f .  3 )  for 
change i s  a f a c t o r  of 1.8 t imes Baldwin's 
( 2 . 0 X l O l l  exp(-16600/RT)) and 3.4 t imes Kaufman and Del Greco's 
k3 (2.5xlOg exp(-7700/RT)). 

k3. 
k2 

The m a x i m  

They are  e i t h e r  l i t e r a t u r e  values or a r e  adjusted with l i t e r a t u r e  values as a 
s t a r t i n g  point. I n  e f fec t ,  a l l  comparisons between calculated and observed 
induction times have been normalized t o  one p a r t i c u l a r  s e t  of experimental 
data  by means of the tabulated set of r a t e  constants. However, it should not 
be inferred t h a t  t h i s  s e t  i s  unique or t h a t  it represents  improved absolute 
value s. 

Comparison with &periment 

Light-emission experiments. - Inf lec t ion  times were measured from osc i l lo -  -~ 
scope records of l i g h t  in-ensity behind shock waves t rave l ing  through 5- and 
20-percent H2 - a i r  mixtures at 10 t o r r  i n i t i a l  pressure. Zero time was f ixed 
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by t h e  a r r i v a l  of t h e  shock at a thin-f i lm res i s tance  gage located at t h e  same 
a x i a l  posi t ion as t h e  s l i t  through which emitted l i g h t  was transmit ted t o  a 
monochromator and photomultiplier detector .  Details of t h e  experiment a r e  
given i n  reference 5, which a l s o  includes t h e  data  f o r  t h e  5-percent mixture. 
Results are p lo t ted  i n  f igure  1, which a l s o  shows inf lec t ion  times calculated 

from equation (5) as s o l i d  
l ines .  The temperatures 
used t o  p lo t  t h e  data  and 
t h e  s o l i d  l i n e s  were ca l -  
culated from shock veloc- 
i t y  by using t h e  graphical 
method of Markstein ( re f .  
ll), and they  represent 
f u l l  thermal equilibrium 
behind t h e  shock. 

200- 
190 - 
180 - 
170 - 
160 - 
150 - 
140 - 
130 - Observed 

100 - Since t h e  r a t e  con- 
s t a n t s  were chosen f o r  a 
good fit t o  t h e  5-percent 
data  a t  intermediate t em- 
peratures, t h e  upper s o l i d  
l i n e  na tura l ly  agrees well 
with t h e  experimental re-  
s u l t  s. Inf lec t  ion times 
f o r  t h e  20-percent mixture 
a r e  predicted t o  be about 
half as great a t  a given 
temperature. Despite a 
higher degree of sca t te r ,  
due la rge ly  t o  t h e  f a c t  
t h a t  shock v e l o c i t i e s  were 
not as uniform as i n  t h e  
leaner mixture, t h e  20- 
percent data  bear out t h i s  
predict ion qui te  well. 

80- --- 
!d 
v)  
1 

70 - .- E 
c 
c 

U al 

c 

.- 2 60- 
- 
c - 

50 - 

It was pointed out i n  I 
9.5 t h e  e a r l i e r  work (ref. 5)  

t h a t  equation (5) i s  de- 
r ived from an approxima- 
t i o n  t h a t  becomes worse as 

Temperature, T, O K  t h e  temperature increases. 
I n  order t o  assess  t h i s  
effect ,  t h e  d i f f e r e n t i a l  
equations based on re- 
act ions (i) t o  (v) were 

d/ tempera ture ,  OK 

I 
1300 

I I 
1 loo 1900 1700 1Mo 

Figure 1. - Comparison of calculated and observed times of inflection in records of 
O H ' ~ Z + - ~ I I  emission intensity as function of time. 

integrated numerically t o  give [OH*] as a function of time, and inf lec t ion  
times were obtained from t h e  p lo t ted  r e s u l t s .  
only 10 percent la rger  at t h e  highest temperature considered (1900° K ) ,  SO 
equation (5) i s  indeed a very good approximation. 

These more accurate times were 

6 



The simplifying k ine t i c  assumptions adopted by Schott and Kinsey ( r e f .  1) 
and by Nicholls, Adamson, and Morrison ( r e f .  8)  lead  t o  t h e  conclusion that 
(1/~) should be given by t h e  following expression: 

This r e su l t ,  when inser ted  i n  equation (l), provides t h e  bas i s  on which Schott 
and Kinsey expected t h e i r  data t o  co r re l a t e  i n  terms of t h e  parameter t i [021.  
It can be seen from equation (5)  tha t  t h e  same cor re la t ion  should hold f o r  t h e  
light-emission data  of f i gu re  1 if equation (6 )  were correct;  but LO2] is  only 
about 1.2 times as l a rge  i n  t h e  5-percent as i n  t h e  20-percent mixture, while 
t h e  da ta  d i f f e r  by a l a rge r  fac tor ;  so t h e  cor re la t ion  w i l l  not br ing the  re-  
s u l t  s together .  

Light-absorption experiments. - Although t h e  work of Schott and Kinsey 
covered a  much wider range of [H3]/[0,] values than t h e  l ight-emission s tudies  
ju s t  discussed, t h e  f a i l u r e  of tee. 
i n  t h e i r  r e su l t s .  However, t hey  d id  observe t h a t  when t h e  da ta  f o r  each mix- 
t u r e  was considered separately,  t , [ O , I  var ied with mole f r a c t i o n  of oxygen. 
The values they obtained f o r  a constant induction-zone temperature of 1800’ K 
a re  quoted i n  the  last  column of t he  following t ab le :  

tY[Oz] cor re la t ion  w a s  obscured by s c a t t e r  

1 

Il iX-  
t u r e  

A 

B 

D 

F 

C 

E 

H ‘  

H 

2 

‘2, 
Iercent 

0.43 

.49 

.45 

.49 

1.99 

2 .oo 
4 .OO 

19.7 

3 

H2I/ LO21 

1 .6  

2 .o 

5.5 

2 .o 

1.9 

.5 

.25 

.25 

2.5 

2.6 

4.0 

12 .o 

12 .o 

21.0 

37 .o 

49 .O 

5 

tv’ 
;ecXlOe 

16.2 

15.1 

4.6 

3.2 

4 .O 

7.3 

8.1 

7.7 

6 

Calculated 

Constant k2 
~~ 

3q. (4:  

5.7 

5.1 

3.3 

4 . 5  

4.6 

8.9 

13.5 

13.2 

Numeric a 1  

5.7 

5.4 

3.6 

4.6 

4.7 

9.2 

13.8 

13.7 

~ 

Time - 
lependent 

k2 

6.1  

5.7 

3 .8 

4.9 

5.2 

10.7 

16.5 

17.4 

3bserved 

2.7 

3 . 7  

3.1 

4.5 

4.7 

5.4 

7.8 

11 .7  

?Jnpubl ished data rece ived  from G.  L. Schot t ,  Dee. 1963. 

Each mixture i s  designated by a l e t t e r  as i n  t h e  o r ig ina l  work ( r e f .  1). 

The first t w o  columns of calculated r e s u l t s  give values obtained by means 
of equation (4)  and by numerical integrat ion.  
difference i n  any of t h e  p a i r s  of numbers, so it can be concluded t h a t  equa- 
t i o n  (4 )  i s  v a l i d  over t h e  f u l l  range of [H 1/[02] values. 
e i t h e r  column of calculat ions (constant 

There is  no more than 10-percent 

Comparison of 
kzf with t h e  experimental r e s u l t s  
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- - discrepancy i s  a f a c t o r  of about 
- 

8 

2 10-8 

c - - ed i n  t h e  present paper. In  I I 1 1 1 
-r 

z 10-6- 

e c 
m 

10-7 

10-8 

10-9 

together  with l i n e s  calculated 
- - f o r  eight of t h e  nine [H21/[021 - 
- values studied. The calcula-  - 0.10 
- t i o n s  were made by means of 0 .33 
- A 7  

0 12 
V 24 

equation ( 4 )  by assuming a con- 
s t  ant  induct ion- z one pres sur e 
of 1 atmosphere i n  a l l  cases. =- 

- Inasmuch as t h e  pressure only 

- ri thmic term of equation (4),  
- t h e  r e s u l t  i s  qui t  e insens i t ive  

t o  t h e  assumed pressure, and 
moreover ( a s  shown by an un- 

- 
- - enters  v i a  [021, i n  t h e  loga- 
- 

- - published communication from 
- White) 1 atmosphere i s  a reason- 

r 
- 
- 
- able average for these experi-  

ments. - 

Inspection of f igu re  2 
4 6 8 10 shows t h a t  experiment and ca l -  



t h e r e  i s  no r e a l  assurance t h a t  t h e  data  of White and Moore should coincide, 
s ince they  a r e  based on dens i ty  changes r a the r  than on t h e  concentration of OH. 
I n  any event, t h e  discrepancies between experiment and ca lcu la t ion  a r e  no more 
than a f ac to r  of two at worst. 

[ 
V 

The slopes of t h e  calculated l i n e s  undergo a noticeable increase as 
H2 I /  LO2 1 increases, a r a the r  marked change taking place between [H2 I/ LO2 1 
-alues of 0.10 and 0.33. This behavior i s  due t o  t h e  increased importance of 

reac t ion  (111) with i t s  smaller ac t iva t ion  energy i n  t h e  leaner  mixtures, while 
i n  those  mixtures l e s s  abundantly supplied with 02, react ion (11) assumes more 
control.  

White and Moore ( r e  4) observed t h a t  t h e i r  da ta  can be cor re la ted  if  t h e  
parameter ti([021[H2])1f' i s  used ins tead  of t i[O2].  It i s  not r ead i ly  ap- 
parent that equation (4) can predict  t h i s  correlat ion.  It does follow, how- 
ever, i f  one considers a l e s s  exact solut ion of t h e  induction-zone k ine t ics .  
Brokaw ( r e f .  9 )  found t h a t  a r a the r  good f irst  approximation t o  (1/~) can be 
obtained by imposing a steady s t a t e  on OH (but not on 0 and H): 

The approximate time a t  which [OH] = lom6 mole per l i t e r  i s  therefore  

Equation (8 ) shows that  t h e  parameter t i  ( [Oz 1 [H2 1 ) 1 1 2  w i l l  approximately 
co r re l a t e  t h e  data  provided t h a t  

I 

constant 

1 / 2  

(b)  (. + 8k2[02,> >> 1 
k3 [H2 1 

. 
A t  any given temperature i n  t h e  experimental range, ca lcu la t ion  shows that  

c r i t e r i o n  (a) i s  well  s a t i s f i e d  f o r  a l l  [H21/[021 values s tudied by White and 
Moore and t h a t  c r i t e r i o n  (b )  holds very wel l  f o r  t h e  leaner mixtures up t o  

[H21/[021 = 0.33. Consequently, a p l o t  of ti([02][H2])1/2 as a funct ion of 
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1/T 
tures;  hence, t h e  correlat ion does have a bas is  i n  t h e  induction-zone k ine t ics .  

should, at t h e  very leas t ,  br ing together  t h e  data  f o r  a l l  t h e  lean mix- 

DISCUSSION 

The foregoing comparisons between calculated and observed induction times 
show t h a t  t h e  experimental r e s u l t s  a r e  explained by straightforward appl icat ion 
of a simple k ine t ic  scheme. There i s  no need t o  invoke e f f e c t s  due t o  slow 
v ibra t iona l  re laxat ion of Oz o r  HZ. 

Perhaps t h i s  i s  not a surpr is ing resu l t ,  because t h e r e  is  no a p r i o r i  
reason t o  believe t h a t  reactions (i) t o  (111) normally obtain par t  of t h e i r  
ac t iva t ion  energy from i n t e r n a l  degrees of freedom. On t h e  other hand, many 
reactions do. The measured r a t e s  of thermal dissociat ion of simple molecules, 
f o r  example, usually have t o  be interpreted by assuming t h a t  i n t e r n a l  energy i s  
a contributing f a c t o r  ( re f .  1 2 ) .  O f  course, such dissociat ion react ions a r e  
s t r i k i n g l y  d i f fe ren t  from those occurring i n  t h e  induction period of t h e  
H2 - O2 reaction, but it i s  nevertheless worthwhile t o  see i f  calculat ions can 
confirm t h a t  v ibra t iona l  e f f e c t s  should be absent, or a t  l e a s t  s m a l l .  

F i r s t  of a l l ,  it must be acknowledged t h a t  some or  a l l  of t h e  i n i t i a t i o n  
process, whether by react ion (i) or somk other resetion, w i l l  proceed i n  vibra- 
t i o n a l l y  cold gas. But equations (4)  and (5) show t h a t  induction time i s  ex- 
tremely insensi t ive t o  t h e  r a t e  of i n i t i a t i o n ;  therefore,  it i s  unl ikely t h a t  
experimental invest igat ion could detect  v ibra t iona l  e f f e c t s  -here. 

O f  t h e  much more important reactions, namely, those t h a t  branch t h e  chain, 
only react ion (11) involves t h e  oxygen molecule. Therefore, l e t  us  next con- 
s i d e r  what would happen to t h e  induction time i f  t h e  v ibra t iona l  energy of Oz 
were needed f o r  act ivat ion.  The simplest way t o  compute a n  upper l i m i t  f o r  t h e  
e f fec t  i s  t o  assume t h a t  a l l  t h e  ac t iva t ion  energy must res ide  i n  vibrations.  
In  other words, RT i s  replaced by RTv, where T i s  t h e  overa l l  temperature 
of t h e  induction zone and Tv 
instant,  yielding 

i s  t h e  v ibra t iona l  temperature of 0 2  at a given 

k2 = AZ exp(- E2/RTv) ( 9 )  

The timewise h is tory  of 
( re f .  13): 

T,, s t a r t i n g  from 300° K, may be wri t ten as follows 

T, = T - (T - 300)exp(- t/tv) (10) 

where t, i s  t h e  v ibra t iona l  re laxat ion time. 

White and Millikan have presented data  (refs. 14  t o  16 )  and a general  cor- 
r e l a t i o n  ( re f .  1 7 )  t h a t  permit t h e  relaxat ion time of 02 i n  any mixture con- 
ta in ing  02, H2, Argon (&), and nitrogen ( N z )  t o  be estimated. Values calcu- 
l a t e d  a t  1800° K f o r  the HZ - 02 - Ar mixtures used i n  reference 1 a r e  l i s t e d  
i n  column 5 of the  t a b l e  on page 7. These times d i f f e r  considerably from those 
estimated by Schott and Kinsey because of t h e  subsequent discovery ( re f .  16 )  



t h a t  HZ i s  extremely e f f ec t ive  i n  c o l l i s i o n a l l y  exci t ing t h e  02 vibrat ions.  
The range of r a t i o s  of observed t i  t o  t, i s  2.6 (mixture H ' )  t o  1 6 . 9  (mix- 
t u r e  D); hence, t h e  time required f o r  re laxat ion i s  always less than t h e  mea- 
sured induct ion t imes. 

The d i f f e r e n t i a l  r a t e  equations containing t h e  t ime-dependent k2 
(eqs.  ( 9 )  and (10)) w e r e  in tegra ted  by means of a high-speed machine program. 
The time at which [OH] = 10-6 mole per l i t e r  was read off from t h e  p lo t ted  r e -  
s u l t s .  Figure 3 cont ras t s  t h e  behavior when k2 i s  constant and when it i s  a 

Time dependent 
Constant 

/ 
/ 
/ 
/ 

/ 
I 'w 

10-11 I 
0 10 

I I 
20 

I I ~ u 
40 50 

Time, p e c  

Figure 3. -Effect of time-dependent k2 on hydroxyl concen- 
tration dur ing  induction period in 0.01 hydrogen - 0.04 
oxygen - 0.95 argon mixture at BOOo K. 

time-varying function of t h e  02 v i -  
b ra t iona l  temperature i n  mixture H', 
t h e  mixture f o r  which t, comes 
c loses t  t o  ti. Remarkably, t h e  ex- 
treme assumption t h a t  a l l  t h e  act iva-  
t i o n  energy must come from t h e  v i -  
b ra t iona l  energy of O2 only increases 
t i  by 20 percent. Similarly small 
e f f ec t s  f o r  t h e  other mixtures a r e  
shown i n  t h e  t a b l e  on page 7. 

The s l i g h t l y  more d i f f i c u l t  
in tegra t ion  based on react ions (i) t o  
(V) was a l so  car r ied  out subject t o  a. 
time-varying k2 s o  that  i n f l ec t ion  
times could be obtained f o r  compari- 
son with t h e  light-emission experi- 
ments i n  5- and 20-percent H2 - a i r  
mixtures. The r e s u l t s  a r e  p lo t ted  
a s  dashed l i n e s  i n  f igu re  1, page 6. 

A t  t h i s  time it i s  necessary t o  
decide whether the data points i n  
f igu re  1 can be compared w i t h  the  
dashed l i n e s .  It w i l l  be reca l led  
t h a t  the  points  represent observed 
in f l ec t ion  times p lo t ted  against  t he  
rec iproca l  of t he  f i l l - thermal -  
equilibrium temperature, as calcu- 
l a t e d  from shock speed by Markstein's 
method ( r e f .  11). But there  i s  actu-  
a l ly  a marked temperature var ia t ion  
i n  the induction zone, because these 
mixtures cons is t  of diatomic gases 
that absorb energy i n  vibrat ions.  
For example, i f  t he  thermal- 
equilibrium temperature of t he  induc- 
t i o n  zone i n  20-percent H2 - air  mix- 
ture i s  1900' K, t h e  temperature j u s t  

I n  cont ras t ,  t he  mixtures used by behind the  shock w i l l  be about 2070' K. 
Schott  and Kinsey were (except f o r  
ess  of v ibra t ion  re laxa t ion  had l i t t l e  e f f e c t  on the  ove ra l l  induction-zone 
temperature. 

H )  heavily d i lu t ed  with argon, s o  the  proc- 
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However, ca lcu la t ion  of t h e  v i b r a t i o n a l  re laxat ion times f o r  02 i n  the  
H2 - a i r  mixtures shows t h a t  t h e  process i s  very fast, because of t h e  appreci- 
ab le  mole f r a c t i o n  of H2 present.  A t  1500° K, f o r  instance, t h e  observed in- 
f l e c t i o n  times a r e  about 6 t i m e s  longer than the  calculated relaxat ion times i n  
the  5-percent mixture, and i n  t h e  20-percent mixture, about 10 times longer. 
Corresponding calculat ions f o r  the  N2 present i n  the  mixtures suggest t h a t  
re laxa t ion  w i l l  require  times comparable t o  the  observed i n f l e c t i o n  times; i n  
a c t u a l  f a c t ,  however, the process w i l l  be g r e a t l y  accelerated ( ref .  4) by ex- 
change of v ibra t iona l  energy from t h e  e a s i l y  excited 02. Therefore, the  t e m -  
perature  of the induction zone during most of i t s  h i s t o r y  w i l l  be c lose t o  the  
full-thermal-equilibrium value, and it i s  indeed appropriate t o  use t h a t  tem- 
perature i n  p l o t t i n g  the  data .  

I n  f igure 1, page 6, it is  seen that the  points f o r  higher temperatures 
perhaps come c loser  t o  the  dashed l i n e s  calculated f o r  the case of slow 02 
re laxat ion.  However, t h e  predicted e f f e c t s  a r e  again small, j u s t  as i n  the  
mixtures studied by Schott and Kinsey, and the  data a r e  c e r t a i n l y  not good 
enough t o  warrant any pos i t ive  conclusion. 

It is  more d i f f i c u l t  t o  consider what might happen i f  slow v ibra t iona l  
re laxat ion of H2 played a r o l e  i n  t h e  chain-branching k ine t ics .  In  t h e  f irst  
place, H2 p a r t i c i p a t e s  i n  two of t h e  react ions (I and 111), and it i s  best  t o  
consider only one at a time f o r  t h e  sake of c l a r i t y ;  but more important i s  t h e  
f a c t  t h a t  t h e  v ibra t iona l  re laxat ion time of H2 i n  H2 - 02 mixtures i s  unknown. 

I f  re laxat ion i s  assumed t o  occur by a simple c o l l i s i o n  process, t h e  time 
can be calculated ( r e f .  17), and it turns  out t o  be extraordinar i ly  long due 
t o  t h e  very high c h a r a c t e r i s t i c  temperature of t h e  molecule. 
c o l l i s i o n a l  re laxat ion times t u r n  out t o  be much longer than observed induc- 
t i o n  periods. However, White and Moore (ref.  4)  have found that the  process 
i s  a c t u a l l y  a grea t  d e a l  f a s t e r  than it i s  expected t o  be on the  bas i s  of the 
cor re la ted  data f o r  other systems ( r e f .  1 7 ) ;  i n  f a c t ,  it i s  s o  fast  that it 
cannot be resolved interferometr ical ly  i n  t h e i r  experiments. Therefore, values 
of for H2 i n  t h e  presence of 02 a r e  unavailable a t  present,  and it i s  
not  possible t o  car ry  out calculat ions i n  which equation (10) is  used t o  make 
kl or  k3 time dependent. But reasoning by simple analogy from the  r e s u l t s  
obtained with a time-dependent k2, it c e r t a i n l y  seems l i k e l y  t h a t  the  e f f e c t  
of H2 re laxat ion on induction time would be s m a l l .  

In  fac t ,  t h e  

CONCLUSIONS 

From t h i s  study on the  e f f e c t s  of concentration and vibrat ional  re laxat ion 
on the induction period of hydrogen (H2) - oxygen (02) reactions,  the following 
conclusions a r e  drawn: 

1. Induction times f o r  t h e  hydrogen-oxygen reaction, measured behind 
shock waves by various techniques and over a very wide range of [H2 I/ LO2 1, 
can be explained by a simple k ine t ic  scheme consisting of an i n i t i a t i o n  re- 
act ion and t h e  usual t h r e e  chain-branching reactions.  

1 2  



gen ( N z )  does not play a s igni f icant  part i n  the induction-period k ine t ics .  
While perhaps not unexpected, t h i s  f a c t  i s  per t inent  to prac t i ca l  considera- 
t i ons  of a i r -breathing hydrogen-fueled engines 

4. Calculations based on extreme assumptions ;bout t h e  possible r o l e  of 
v ibra t iona l  energy i n  t h e  chain-branching react  ions show that slow relaxat  ion 
of 02 could have only a s m a l l  e f f ec t  on induction t i m e ,  probably not detectable  
experimentally. Equally confident statements cannot be made about t h e  possible 
r e s u l t s  of slow relaxat ion of H 
t u r e s  is  unknown; however, it i s  very l i k e l y  t h a t  t h i s  e f fec t  ( i f  it e x i s t s )  i s  
a l s o  a s m a l l  one. 

because i t s  relaxat ion time i n  H2 - O2 m i x -  2 

Lewis  Research Center 
National Aeronautics and Space Administrat ion 

Cleveland, Ohio, May 21, 1964 
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